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Outline

Basics of HMM-based speech synthesis



Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)
Speech (real-valued time series) — Text (discrete symbol sequence) J
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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Speech (real-valued time series) — Text (discrete symbol sequence)

Statistical machine translation (SMT)

Text (discrete symbol sequence) — Text (discrete symbol sequence)
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Structure of state-output (observation) vectors

Oy

ct Mel-cepstral coefficients

Spectrum part < D¢, D Mel-cepstral coefficients

D%c, DD Mel-cepstral coefficients
L
Dt log FO
Excitation part < opt D log FO
82p, DD log FO
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Hidden Markov model (HMM)
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Multi-stream HMM structure
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Training process

data & labels
i

o

Compute variance
floor (HCompV)

Reestimate CD-HMMs by |
EM algorithm (HERest)

Estimate CD-dur. models
from FB stats (HERest)

|

|

l

Initialize CI-HMMs by
segmental k-means (HInit)

Decision tree-based
clustering (HHEd TB)

Decision tree-based
clustering (HHEd TB)

|

|

Reestimate CI-HMMs by
EM algorithm
(HRest & HERest)

Reestimate CD-HMMs
by EM algorithm (HERest)

|

l

Copy CI-HMMs to
CD-HMMs (HHEd CL)

Untie parameter tying
structure (HHEd UT)

|

monophone

|
fullcontext

l

Estimated dur models

L Estimated

HMMs

(context-independent, Cl)  (context-dependent, CD)
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Context-dependent acoustic modeling

{preceding, succeeding} two phonemes

Position of current phoneme in current syllable

# of phonemes at {preceding, current, succeeding} syllable
{accent, stress} of {preceding, current, succeeding} syllable
Position of current syllable in current word

# of {preceding, succeeding} {stressed, accented} syllables in phrase
# of syllables {from previous, to next} {stressed, accented} syllable
Guess at part of speech of {preceding, current, succeeding} word

# of syllables in {preceding, current, succeeding} word

Position of current word in current phrase

# of {preceding, succeeding} content words in current phrase

# of words {from previous, to next} content word

# of syllables in {preceding, current, succeeding} phrase

Impossible to have all possible models o
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Decision tree-based state clustering [7]
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Stream-dependent tree-based clustering

44
NN

Decision trees |
for
mel-cepstrum |

Decision trees
for FO

Spectrum & excitation can have different context dependency
— Build decision trees individually
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State duration models [8]
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T=8

Probability to enter state ¢ at ¢y then leave at 1 + 1

t1
Xt (1) 5 > g 1(f)agiall = T[ bi(0) > ainbi(01,41) B8 1(k)

J#i t=to k#i

— estimate state duration models o
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Stream-dependent tree-based clustering

State duration
model

HMM

Decision trees |

for
mel-cepstrum

Decision trees
for FO
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HMM-based speech synthesis [4]
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Synthesis part
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Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words
6 = argmax p(o | w, )
o

= arg max ;p(o, q|w,N)
q

~ argmaxmax p(0, q | w, \)
o gq

= argmaxmaxp(o | ¢, \)P(q | w,\)
o q
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Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words
6 = argmaxp(o | w, \)
o

= arg max ;p(o, q|w, )
q

~ argmaxmax p(0, q | w, \)
o g
= argmaxmaxp(o | ¢, \)P(q | w,\)
o g
Determine the best state sequence and outputs sequentially
G = argmax P(q | w, \)
q

6 = argmaxp(o | ¢, \)
o
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Best state sequence
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Best state outputs

w/o dynamic features
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0 becomes step-wise mean vector sequence
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Using dynamic features

State output vectors include static & dynamic features
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Relationship between static and dynamic features can be arranged as
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Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

6 = argmaxp(o | q, 5\) subject to o= We
o

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 30 of 104





