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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Speech (real-valued time series) → Text (discrete symbol sequence)

Statistical machine translation (SMT)

Text (discrete symbol sequence) → Text (discrete symbol sequence)

Text-to-speech synthesis (TTS)

Text (discrete symbol sequence) → Speech (real-valued time series)
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Structure of state-output (observation) vectors
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Hidden Markov model (HMM)
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Multi-stream HMM structure
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Training process

Compute variance
floor (HCompV)

Initialize CI-HMMs by
segmental k-means (HInit)

Reestimate CI-HMMs by
EM algorithm

(HRest & HERest)

Copy CI-HMMs to 
CD-HMMs (HHEd CL)

Reestimate CD-HMMs by
EM algorithm (HERest)

Decision tree-based
clustering (HHEd TB)

Reestimate CD-HMMs
by EM algorithm (HERest)

Untie parameter tying
structure (HHEd UT)

monophone
(context-independent, CI)

fullcontext
(context-dependent, CD)

Estimated
HMMs

data & labels

Estimate CD-dur. models
from FB stats (HERest)

Decision tree-based
clustering (HHEd TB)

Estimated dur models
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Context-dependent acoustic modeling

• {preceding, succeeding} two phonemes

• Position of current phoneme in current syllable

• # of phonemes at {preceding, current, succeeding} syllable

• {accent, stress} of {preceding, current, succeeding} syllable

• Position of current syllable in current word

• # of {preceding, succeeding} {stressed, accented} syllables in phrase

• # of syllables {from previous, to next} {stressed, accented} syllable

• Guess at part of speech of {preceding, current, succeeding} word

• # of syllables in {preceding, current, succeeding} word

• Position of current word in current phrase

• # of {preceding, succeeding} content words in current phrase

• # of words {from previous, to next} content word

• # of syllables in {preceding, current, succeeding} phrase

. . .

Impossible to have all possible models
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Decision tree-based state clustering [7]

L=voice ?

L="w" ? R=silence ?yes

yes yes

no

no no
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Stream-dependent tree-based clustering

Decision trees
for

mel-cepstrum

Decision trees
for F0

Spectrum & excitation can have different context dependency
→ Build decision trees individually
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State duration models [8]
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Stream-dependent tree-based clustering

State duration
model

Decision trees
for

mel-cepstrum

Decision trees
for F0

Decision tree
for state dur.
models

HMM
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HMM-based speech synthesis [4]

Training part

Synthesis part

Training HMMs

Context-dependent HMMs 
& state duration models
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Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words

ô = arg max
o

p(o | w, λ̂)

= arg max
o

∑

∀q
p(o, q | w, λ̂)

≈ arg max
o

max
q

p(o, q | w, λ̂)

= arg max
o

max
q

p(o | q, λ̂)P (q | w, λ̂)

Determine the best state sequence and outputs sequentially

q̂ = arg max
q

P (q | w, λ̂)

ô = arg max
o

p(o | q̂, λ̂)

Heiga Zen Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN July 9th, 2015 26 of 104



Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words
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Best state sequence
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Best state outputs
w/o dynamic features

Variance Mean

ô becomes step-wise mean vector sequence
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Using dynamic features

State output vectors include static & dynamic features

ot =
[
c>t , ∆c
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Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

ô = arg max
o

p(o | q̂, λ̂) subject to o = Wc

If state-output distribution is single Gaussian

p(o | q̂, λ̂) = N (o; µ̂q̂, Σ̂q̂)

By setting ∂ logN (Wc; µ̂q̂, Σ̂q̂)/∂c = 0

W>Σ̂−1
q̂ Wc = W>Σ̂−1

q̂ µ̂q̂
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